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Residuated Semigroups and the Algebraic
Foundations of Quantum Mechanics1

Leopoldo Román2

Let Q be an idempotent and right-sided quantale. There is a one to one correspondence
between quantifiers and non-commutative binary operations making Q an idempo-
tent and right-sided quantale. If Q is an atomic and irreducible orthomodular lattice
there are only two such operations. Namely, the discrete quantifier and the indiscrete
quantifer.
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1. INTRODUCTION

By the algebraic foundations of quantum mechanics, we understand the
lattice theoretical approach given by Birkhkoff and von Neumann (1936). Also,
we believe in the “logic” of (non-relativistic) quantum mechanics as being the
lattice of closed subspaces of a separable infinite dimensional Hilbert space in the
sense of Mackey (1957).

Mathematical logic and algebra have now a very close relation. Indeed, an
example of the last claim is algebraic logic, a concept introduced by Halmos
(1956), and in particular, the notion of a quantifer introduced in Halmos (1962)
for boolean algebras. The main example in this direction is an existential
quantifier.

On the other hand, Janowitz (1963) generalized the notion of a quan-
tifier for orthomodular lattices. Orthomodular lattices have a very close re-
lation with boolean algebras; Halmos gave a characterization of quantifiers
for boolean algebras, the reader can consult Theorem 10 in Halmos (1962),
for details. As far as we know, a general characterization of a quantifier
for orthomodular lattices is not known. Nevertheless, if L is an atomic and
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irreducible orthomodular lattice, L admits only two quantifiers: the discrete
and the indiscrete quantifiers (see Janowitz, 1963, p. 1245). The best re-
sult in finding a characterization of quantifiers is Theorem 7 in Janowitz
(1963).

Quantales were introduced for a possible algebraic foundation of quantum
mechanics. We shall see that idempotent, right-sided quantales are in one-to-one
correspondence with closure operators which are in fact a quantifiers. Whenever
mentioned, the notion of quantifiers is from a general point of view; it is not hard to
define a quantifier for a bounded lattice. The concept of a quantale was introduced
only for bounded complete lattices.

However, with the help of residuation theory we can consider a more gen-
eral situation in which no completeness assumption is needed. See the book
by Blyth and Janowitz (1972). We think that residuation theory is very impor-
tant for the Algebraic Foundations of Quantum Mechanics. In principle, there
could be a non-obvious connection between quantales and residuation theory.
We shall see that this is not the case. Residuation theory is a more general
framework. A quantale is just a residuated semigroup which is also a complete
lattice.

The article is organized as follows. In the first section we introduce the
concepts we need for our purposes. In the second section we prove that the only
two non-commutative binary operations making the lattice of closed subspaces of
a separable infinite dimensional Hilbert space an idempotent, right-sided quantale,
are induced by the discrete and indiscrete quantifiers.

2. SECTION I

Definition 1. A quantale Q is a complete lattice together with an associative
product & such that, for all a, b ∈ Q, {ai}i∈I , {bi}i∈I ⊆ Q:

(1) a&(∨i∈I bi) = ∨i∈I (a&bi);
(2) (∨i∈I ai)&b = ∨i∈I (a&b)

A quantale Q is right-sided and idempotent, if it satisfies the following two
conditions:

(1) a&1 = a.
(2) a&a = a for all a ∈ Q.

Remark 1.
Borceux and Bossche (1986) proved that given any complete lattice

(Q,≤, 0, 1), there is a one-to-one correspondence between binary operations,
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&: Q × Q → Q, making Q into an idempotent, right-sided quantale and closure
operations j : Q → Q satisfying the following conditions:

(1) a ≤ j (a).
(2) j (a ∧ j (b)) = j (a) ∧ j (b).
(3) a ∧ j (∨i∈I bi) = ∨i∈I (a ∧ j (bi)).
(4) (∨i∈I ai) ∧ j (b) = ∨i∈I (ai ∧ j (b))

for all {ai}i∈I ⊆ Q; a, b ∈ Q.
Condition 2, is precisely the main property of a quantifier.
First of all, if A is a poset an order preserving map F : A → A is a closure

map in case F satisfies:

(1) If a ∈ A then a ≤ F (a).
(2) F is idempotent.

Having defined closure maps we can introduce the concept of a quantifier.

Definition 2. If L is a bounded lattice with bounds 0, 1 and F : L → L is a
closure map, F will be called a quantifier on L in case F satisfies:

(1) F (0) = 0.
(2) If a, b ∈ F then F (a ∧ F (b)) = F (a) ∧ F (b).

There are always two special quantifiers on L. The discrete quantifier which
is the identity map; the indiscrete quantifier quantifier defined by: F (a) = 1 for
a �= 0 and F (0) = 0.

If Q is an idempotent, right-sided quantale, we get a quantifier j : Q → Q.
Namely, j (a) = 1&a and the binary operation & is a a ∧ j (b), where a, b ∈ Q.

In the rest of this article we shall work only with an idempotent, right-sided
quantale. There are many examples of these quantales.

First of all, recall that a complete lattice L with bounds 0 and 1 is a locale if
the following is satisfied:

(∨i∈I ai) ∧ b = ∨i∈I (ai ∧ b) .

for all, {ai}i∈I ⊆ L, b ∈ L.
As typical example of a locale, take the open sets of a topological space X.

Clearly, the open sets satisfy the last conditions.
Given an arbitrary locale L, L is an idempotent, right-sided quantale in a

trivial way; the binary operation & is just ∧.
The closed ideals of a C∗-algebra is also an example; here the binary operation

& is the closure of the product of two ideals. The next example, needs some
definitions.
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Definition 3. A bounded lattice, L = (L,∨,∧, 0, 1) is an orthomodular lattice if
there exists a unary operation ⊥ : L → L satisfying: for all a, b ∈ L:

(1) a ≤ b iff b⊥ ≤ a⊥.
(2) a⊥⊥ = a.
(3) (a ∨ b)⊥ = a⊥ ∧ b⊥.
(4) a ∨ a⊥ = 1.
(5) a ∧ a⊥ = 0.
(6) if a ≤ b then b = a ∨ (a⊥ ∧ b).

We shall indicate how to induce a binary operation &, making L an idem-
potent, right-sided quantale. First of all, given two arbitrary elements a, b in an
orthomodular lattice L, define a&b = (a ∨ b⊥) ∧ b and the Sasaki hook is given
by the following rule: a → b = (a ∧ b) ∨ a⊥. If we denote by ρb(a) = a&b and
ψa(b) = a → b it is not hard to prove:

ρb(a) ≤ c iff a ≤ ψb(c). (∗)

In other words, ρb has a right adjoint: namely, ψb. The map ρb is called the
Sasaki projection. Finch (1970) considered this projection as a binary operation
and proved the last claim. Having defined the binary operation & it is now easy to
introduce the notion of compatibility and the center of an orthomodular lattice.

Definition 4. Let L be an orthomodular lattice. We say a, b ∈ L are compatible
elements (denoted by bCa) if and only if b&a = a ∧ b.

Notice that whenever a, b are compatible elements it is easy to see that
a&b = a ∧ b also holds. The simplest example of a pair of elements a, b which
are compatible is whenever b = a⊥.

Definition 5. If L is an orthomodular lattice. The center of L, denoted by Z(L)
is the set

Z(L) = {a ∈ L | a&b = b&a = a ∧ b, ∀b ∈ L}
Notice that Z(L) is a boolean subalgebra of L. In particular, always 0,1 belong

to the center of L.

Definition 6. Let L be an orthomodular lattice. If the center is a complete sub-
lattice of L and a is an arbitrary element of L, the central cover of a is given
by

a(a) = ∧{z ∈ Z(L) | a ≤ z}.
The reader can see Beltrametti and Cassinelli (1981) for a discussion of

the central cover, as well as some properties. Moreover, e is a center-valued
quantifier; i.e., the image of a under e is contained in the center of L. A quantifier
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is not necessarily, center-valued. Indeed, suppose L is a complete orthomodular
lattice and consider the following map: let z be a central element of L. Define
F (a) = (a ∧ z) ∨ e(a ∧ z⊥). F is a quantifier but it is not center valued as the
reader can check easily.

The central cover gives us an interesting example of an idempotent, right-
sided quantale.

Proposition 1. Suppose L is an orthomodular lattice, and the center Z(L) is
complete, as a sublattice, then the map e: L → L satisfies the conditions of
Remark 1; the operation &, is defined by a&b = a ∧ e(b), making L an idempo-
tent, right-sided quantale.

In particular, if L is a complete orthomodular lattice all we need to generate
an idempotent, right-sided quantale, is a center-valued quantifier satisfying the
conditions of Remark 1.

3. SECTION II

Residuation theory is an old mathematical topic; we just want to introduce
the necessary definitions for the purposes of this article. The reader can see Blyth
and Janowitz (1972) for more details.

Definition 7. Let A, B two arbitrary posets and f : A → B a map, we say f is
residuated is there is a map f + : B → A satisfying:

f ◦f + ≤ 1B, 1A ≤ f +◦ f .

such an f + : B → A is unique and is called the residual of f .
In modern language, we just can say: f is residuated if and only if f has a

right adjoint; the identity map and the composition of residuated maps are clearly
residuated maps; it is not hard to show that, a residuated map f preserves suprema
whenever they exist in A.

Now, thanks to the work of Foulis and Janowitz, we can present now some
algebraic considerations, we think are important for the algebraic foundations of
quantum mechanics. We shall present two examples of residuated endomorphisms.

The first example was considered in Section I. Indeed, take an orthomodular
lattice and consider the maps ρb and ψb; it follows from ∗ of Section I that ρb has
a right adjoint; i.e., ρb is a residuated map and the residual is ψb.

Let X be a non-empty set, and let P (X) be the Boolean Algebra of all subsets
of X. If R is a relation on X consider the following endomorphism ψR : P (X) →
P (X), described by:

ψR(A) = {y ∈ X|∃x ∈ A, xRy}
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It is not hard to show that �R is residuated with residual given by

ψ+
R = i◦ψRop ◦ i.

where i : P (X) → P (X) is the natural involution, sending any subset A of X to
its complement, and Rop denotes the converse relation of R. Moreover, ψR turns
out to be a residuated quantifier iff R is an equivalence relation.

Hence, given a non-empty set X and an equivalence relation R on X we get a
residuated quantifier ψR . In particular, ψR preserves arbitrary suprema and clearly
ψR satisfies the conditions of Remark 1. Hence, we get an idempotent quantale
given again by the rule:

A&B = A ∧ ψR(B)

For A,B ∈ P (X). Notice that this a non-trivial example of an idempotent
right-sided quantale. & preserves arbitrary suprema since P (X) is a boolean
algebra and ψR is residuated.

We can state now the main observation of this article. Recall, an orthomodular
lattice L is irreducible, if the center of L is equal to {0, 1}. In Janowitz (1963,
p. 1245), the following result can be found:

Corollary 1. Let L be an atomic and irreducible orthomodular lattice. Then L

admits only the discrete and indiscrete quantifiers.

An example in which this situation holds is: Suppose H is an infinite dimen-
sional Hilbert space. There is no non-trivial binary operation & defined on the
lattice of closed subspaces of H, denoted by C(H ), making C(H ) an idempotent
right-sided quantale.

The only thing to be noted is: C(H ) has trivial center; in other words,
Z[C(H )] = {0, 1} and C(H ) is atomic.

We close this article with some question. As the reader can see there is
no hope of getting an idempotent, right-sided quantale. This was an important
question since the closed ideals of a C∗-algebra precisely satisfy the conditions of
being an idempotent, right-sided quantale. Also, there is an article (Rosicky, 1989)
where the concept of a quantum frame is introduced. Quantum frames arise from
an idempotent, right-sided quantale. Clearly, there must be a connection between
the considerations we already made and this topic. We shall investigate this in a
future publication.

One of the nice properties of an idempotent, right-sided quantale Q is the
relation between the old operations of a lattice and the new operation &: If a, b ∈ Q

then a ∧ b ≤ a&b ≤ a.
If L is a complete orthomodular lattice and F is a quantifier satisfying the

conditions of Remark 1, then F is a center-valued quantifier and L is an idempotent,
right-sided quantale, the operation & is defined by: a&b = a ∧ F (b). In particular,
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the fixed points of F generate a complete boolean subalgebra of L. If we start with
a quantale and consider a closure operator j, satisfying the conditions of Remark 1,
then the fixed points of j generate a locale, as the reader can check easily. As a
consequence, we can say that from the logical point of view, we get a model of
classical logic, if we start with a complete orthomodular lattice or with a model of
intuitionistic logic, if we consider a quantale; in both cases, we need a quantifier
F, satisfying the conditions of Remark 1.

Notice that the key point of this construction is the quantifier F (a) = 1&a.
Indeed, it is not hard to show that the operation a&b = a ∧ F (b) is associative,
since F (a&F (b)) = F (a)&F (b). If L is an orthomodular lattice and F is a quanti-
fier, then F is a residuated map and therefore F preserves all the existing suprema
in L, see Janowitz (1963). If we want to get a closure operator satisfying the
conditions of Remark 1 we just need F is center-valued. In the case of complete
lattices the closure operator defined on F must satisfies the conditions of Remark 1.
These two algebraic examples can be viewed in a more general seeting: residuated
ordered semigroups. The definition is as follows:

Definition 8. Suppose S is an ordered semigroup. S is a residuated semigroup if
for each x ∈ S the translations ρx, λx given by λx(y) = x ◦ y and ρx(y) = y ◦ x

are residuated maps.
A quantale is just a complete lattice which is also a residuated semigroup.

The preservation of arbitray suprema is trivial since the right and left translations
are residuated maps; we do not need at all any completeness assumption to induce
a non-trivial, non-comutative and associative binary operation on a residuated
semigroup. We hope the reader understands now the following: all we need is a
quantifier which is a also a residuated map.

If we consider orthomodular lattices we need a center-valued quantifier. After
these considerations, there are some natural questions: can we characterize such
quantifiers? There exists a general critera which allows us to consider at the same
time orthomodular lattices and quantales? The answer is positive if we consider
quantic quantifiers; one of the problems in quantum logic is that the meet operator
in an orthomodular lattice L, is not a residuated map; it is not hard to show that the
meet operator is residuated if and only if L is in fact a boolean algebra. However,
we can replace the meet by the operator & defined in Section I, and define a
quantic quantifier taking & instead of ∧, in the definition of a quantifier.

This definition generalizes the concept of a quantifier and we can actually
give a characterization of such maps. Not only for an orthomodular lattice, also for
idempotent, right-sided quantales; in Román (2005), we present a characterization
of quantic quantifiers for orthomodular lattices.

Still, there is another problem. If we consider idempotent, right-sided quan-
tales we have a quantifier; from the point of view of residuation theory, we can gen-
erate a quantifier if we start with an idempotent, right-sided, residuated semigroup
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having binary meets. However, this quantifier is not necessarily a residuated map.
As is well known, in the case of a Hilbert space, the situation is more compli-
cated: we need an algebraic framework which consider the algebraic strucuture
of self-adjoint operators in a Hilbert space. We want to say something about this
algebraic structure.

Gudder and Greechie (1996), gave an example of a Hilbert space H with
dim(H ) ≥ 2 and if E(H )denotes the set of all self-adjoint operators A, satisfying
0 ≤ A ≤ I then E(H ) IS NOT A LATTICE. The partial order is defined by setting:
A ≤ B if 〈Ax, x〉 ≤ 〈Bx, x〉, for all x ∈ H .

Hence, it is not a good approach to start with a complete lattice if we are
really interested in the algebraic foundations of quantum mechanics; we believe
that residuated ordered semigroups, is the right approach.
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